Designing Connections to HSS
Introduction to Moment and Truss Connections

presented by
Brad Fletcher, S.E.
312.275.1664
Bradlee.Fletcher@atlastube.com

Topics

- Introduction
- HSS General Overview
- Types of HSS Connections
- Truss Connections
- Moment Connections
Brad Fletcher, S.E., is a structural engineer at Atlas Tube. In this role, Brad leverages his 20 years of experience in engineering design and the steel industry to provide technical expertise on the use of steel hollow structural sections (HSS) and pipe piling products to design engineers, detailers, fabricators and architects.

A registered structural engineer in the state of Illinois, Brad has held senior positions at leading architecture and engineering firms, Skidmore, Owings & Merrill; Sargent & Lundy; and Halvorson and Partners. Brad has contributed to notable projects, including the Guggenheim Museum in Spain and the Elysian Hotel. For the past six and a half years, most recently while working at Tata Steel (formerly known as Corus), Brad has focused his efforts on serving as a liaison between structural designers and the steel industry.

Brad holds a Bachelor of Science and a Master of Science in civil engineering (BSCE, MSCE) from Purdue University. He is active in many industry groups, including the American Institute of Steel Construction (AISC), the Structural Engineers Association of Illinois (SEAOI) and ASTM International. As chairman of the HSS Marketing Committee within the AISC, Brad upholds the institute’s mission to promote the usage and understanding of steel and HSS. Brad is also on the Board of Governors for the Steel Structures Education Foundation (SSEF) in Canada and the S16 Technical Committee for the Canadian Standards Association (CSA).
Atlas Tube – Market Leader

Largest size range in North America
- 1”–16” square, up to 5/8” wall (larger sizes listed on CISC website)
- 1.25” – 20” round, up to 5/8” wall
- Now offering Jumbo HSS

Shortest rolling cycle in the industry
- 2 – 3 weeks for common sizes

Able to roll custom lengths to minimize cost and waste
- Rolled lengths over 100 ft.

Metallurgists and Structural Engineer on staff to assist with technical and product questions

Products stocked by service centers across North America

CIDECT Member

Four production facilities in North America

Atlas Tube products found in many markets

- Solar Energy
- Mining Equipment
- Non-Residential Construction
- Transportation
- Agriculture & Construction Equipment
- Material Handling Equipment
- Water Treatment facilities
- Oil & Gas
Topics

- Introduction
- HSS General Overview
- Types of HSS Connections
- Truss Connections
- Moment Connections

What are HSS?

The use of tube is extremely popular among engineers and throughout nature.

Tube-like structures are naturally occurring:
- Bones of animals
- Bamboo
- Stems of flowers
What are HSS?

Hollow structural sections are cold-formed, welded steel tube used for welded or bolted construction of buildings, bridges and other structures, as well as a wide variety of manufactured products.

Hollow structural sections are produced in square, round and rectangular shapes to meet structural design requirements.

Why are HSS used?

Aesthetics

Economical

- Efficient in resisting torsional and compressive loads
- Less surface area
- Can have less weight

Comes in a wide range of sizes and shapes

- 1”–22”
- Up to 7/8” wall thickness
- Square, rectangular, round and even elliptical
Advantages of HSS

Ease of handling

Lower finishing costs
- Less surface area

Excellent torsion resistance
- Torsional constant
 200 times greater than open section

Increased unbraced length
- r_x & r_y significantly higher than open sections
- Higher compression capacity for same unbraced length

Robust structures / blast resistance
- Square / round HSS can resist loads from any direction
- Composite HSS (concrete-filled tubes)

Topics

- Introduction
- HSS General Overview
- Types of HSS Connections
- Truss Connections
- Moment Connections
Challenges

Connection Design for HSS
- They are too hard
- They are too expensive
- There are not enough resources
- EOR does not design connections

HSS Connection Types

Tension & Compression
- Bracing
- Splices
HSS Connection Types

Line Loads & Concentrated Loads

Shear Connections

HSS Connection Types

Moment Connections

• Wide Flange to HSS
HSS Connection Types

HSS to HSS Truss Connections
- Tension & Compression

HSS Connection Types

HSS to HSS Moment Connections
HSS Connections - Resources

AISC 360 — Chapter K
 • 2005 & 2010

AISC Design Guide #24

CISC Design Guide 1997

CIDECT Design Guides
 • Available for free on AISC website

Atlas Website
 • www.atlastube.com

HSS Connections – Design Recommendations

International Institute of Welding (IIW)
 • Subcommission XV-E published Design Recommendations on Static Strength of Tubular Joints
 – 3rd Edition (IIW, 2009)

CIDECT (International Committee for the Development and Study of Tubular Structures)
 • An international association of HSS and pipe manufacturers dedicated to expanding knowledge of tubular sections through research and studies
 – 1st ed. Design Guides based on IIW, 1989
 – 2nd ed. Design Guides 1 & 3 based on IIW, 2009
HSS Connections – Design Codes

IIW 1989 is the basis for:
- Eurocode 3, Part 1-8
- AISC 360, Chapter K (2005 & 2010)
- AISC Design Guide 24
- CISC 1997 Design Guide
- 1st ed. CIDECT design guides

The above all will have slight differences due to regional and code format factors

All these design codes and guides will result in comparable designs

HSS Connections

- It’s important to note that local strength of HSS members is an integral part of HSS connection design.
- Understanding these local strength issues is important to member selection.
- Proper member selection by the EOR will have an effect on HSS connection design.
- Reinforcing of connections is difficult and expensive and usually not an option due to architectural or fabrication restraints.
- Even if EOR is not doing final connection design, some checks need to be done to ensure proper joint strength.
- Be sure to give good load information to the party responsible for final connection design.
Joint Design Considerations

The joint strength is determined by the selected chord and bracing member sizes, grades and geometry.

These are decided by the designer.

Topics

- Introduction
- HSS General Overview
- Types of HSS Connections
- Truss Connections
- Moment Connections
Truss Connections

Connections at the panel points of a planar truss

Trusses are typically analyzed with all members “pinned”

Truss connections are designed as tension/compression connections

Types of simple Plane truss

Truss Connections — Joint Types

T or Y-Joint

X-Joint

Gap K-Joint

Overlap K-Joint
Truss Connections — Multi-Planar

Truss Connections — Nomenclature

Brace 1 usually compression brace
Truss Fabrication Costs

Minimum weight does not equal minimum cost

Keep the number of different sizes small

Try to minimize number of connections
– Warren trusses

Understand effects of joint configuration and connection design criteria before analyzing truss and selecting member sizes!

Truss Fabrication Costs — Effect of Joint Type

<table>
<thead>
<tr>
<th>Highest Cost</th>
<th>RHS chord — gap joints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RHS chord — 100% overlap joints</td>
</tr>
<tr>
<td></td>
<td>CHS chord — gap joints</td>
</tr>
<tr>
<td></td>
<td>RHS chord — partial overlap joints</td>
</tr>
<tr>
<td></td>
<td>CHS chord — 100% overlap joints</td>
</tr>
</tbody>
</table>

| Lowest Cost | CHS chord — partial overlap joints |
Gap Joints — Parametric Effects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Direction</th>
<th>Effect on Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chord width to thickness ratio</td>
<td>Down</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Bracing to chord width ratio</td>
<td>Up</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Bracing angle</td>
<td>Down</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Chord factored to yield stress ratio</td>
<td>Less compressive</td>
<td>Capacity up</td>
</tr>
</tbody>
</table>

Overlap Joints – Parametric Effects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Direction</th>
<th>Effect on Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chord width to thickness ratio</td>
<td>Down</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Bracing width to thickness ratio</td>
<td>Down</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Overlap</td>
<td>Up</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Chord factored to yield stress ratio</td>
<td>Less compressive</td>
<td>Capacity up</td>
</tr>
<tr>
<td>Bracing angle</td>
<td>Down</td>
<td>Capacity up</td>
</tr>
</tbody>
</table>
Parameter Effects
Gap & Overlap Joints

Chord width to thickness ratio
Keep ratio down to increase joint capacity
Round HSS $15 \leq D/t \leq 30$
Square HSS $15 \leq B/t \leq 25$

Parameter Effects
Gap Joints

Bracing to chord width ratio
Keep ratio up to increase joint capacity
Keep B_p/B as high as possible and keep t_p/t as low as possible
Parameter Effects
Gap & Overlap Joints

Bracing angle
Keep bracing angle Φ down to increase joint capacity

Parameter Effects
Gap & Overlap Joints

Chord factored to yield stress ratio
Keep compressive stress down to increase joint capacity
Parameter Effects
Overlap Joints

Overlapped brace Overlapping brace

Bracing width to thickness ratio
Try to match branch members width to increase joint capacity

Overlap
The higher percentage of overlap, the higher the joint strength
Failure Modes

Chord face deformation (yielding)
Chord or bracing localised buckling
Chord punching shear
Chord shear
Chord side wall buckling
Bracing effective width

Weld Sizes – Design Approach

Approach 1
Weld proportioned to develop yield strength of connected branch at all locations around the branch.
- Upper limit of weld size
- Conservative
- Appropriate if plastic stress redistribution is required in connection

Approach 2
Weld proportioned to resist applied forces
- Need to account for effective weld lengths
Bracing Effective Width
RHS to RHS Chord

Axial stress distribution

Hypothetical axial stress distribution

Bracing Effective Width
W Section Chord

Axial stress distribution

Hypothetical axial stress distribution
Overlap Detail

Overlap = p
Overlap % = p/q \times 100

Overlap bracings should NEVER be made like this >

- Difficult to fabricate
- Up to 20% weaker

• Use division plate as alternative
• Helps to reinforce joint

Welding

Generally for economics specify a fillet weld for tubular joints

Proper joint design should allow you to avoid complete joint penetration welds

For dynamically loaded trusses, weld sequence is important
Summary

Joint capacity is dependant upon

- Brace angle
- Bracing width to chord width ratio
- Chord width to thickness ratio
- Gap or overlap bracings
- Chord compressive stress

Topics

- Introduction
- HSS General Overview
- Types of HSS Connections
- Truss Connections
- Moment Connections
Rigid frames, or moment frames, are used to resist lateral loads, such as wind or seismic loads.

Moment connections are used to develop continuity and rigidity between a beam and a column.

Moment connections can either be designed as partially restrained or fully restrained.

Fully restrained (FR) moment connections possess sufficient rigidity to maintain the angles between connected members at the strength limit states.

Rigid frames with HSS columns:
- Square HSS provide same resistance along both axes
- Provide clean columns when designed properly
- Provide efficient wide-open spaces
Continuous Roof Beam

- Suitable for single-story structures
- Only top of beam is considered braced
- Additional stiffening or bracing required

Moment Connections — Types

Continuous Beam at Column Splice

- HSS column is interrupted at continuous beam
- For lightly loaded columns, stiffener plates can be used to transfer axial forces
- Heavy loads may require a split HSS on either side of the beam web.
- Beam flange should be wider than HSS. Rectangular HSS may be required to fit base plate on beam.
- Moment transfer to HSS column is dependent on strength of bolts, beam flange thickness, and base and cap plate thickness.
Moment Connections — Types

Through-Plate
- Good for larger moment transfer through joint
- More difficult and costly to fabricate and erect
- Can be placed at column splice
- Column moment transfer is limited by fillet weld of the HSS to through plate. PJP or CJP welds can be used to increase connection strength.
- Good for two-way moment frame system.

Diaphragm Plate
- An alternative to the through plate connection
- Diaphragm plates may be field welded or shop welded.
- When used with beam on one side, additionally need to check the weld transferring shear to the HSS wall.
Moment Connections — Types

Diaphragm & through plate connections can be adapted to better facilitate erection.

Beam stubs can be shop attached to column to allow for field bolting or welding.

End Plate

- Utilizes end plate or angles
- Need to consider/coordinate projection of plates beyond HSS
- Flange width of beam should be as large or larger than the HSS width to maximize efficiency
- Buckling strength of HSS side wall needs to be checked
Connections — Moment

Directly Welded

- May develop full flexural capacity of HSS
- Cannot develop full flexural capacity of W shape
- To achieve max efficiency, HSS wall should be thick and beam flange width should match HSS flat dimension (B-3t)

Questions????

presented by
Brad Fletcher, S.E.
312.275.1664
Bradlee.Fletcher@atlastube.com